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Smooth fibrations of spheres by great spheres occur naturally in the study of
the Blaschke conjecture. In fact, if M is a Blaschke manifold, m is a point of
M, T, M is the tangent space of M at m, exp,,: T,,M — M is the exponential
map at m, and Cut(m) is the cut locus of m in M, then exp;!(Cut(m)) is a
sphere S, in T, M of center 0, and exp,,: S,, — Cut(m) is a smooth great sphere
fibration of the sphere S,,. For general information of the Blaschke conjecture,
see [2].

If K is the real, complex, quaternionic or Cayley algebra, n is the dimension
of K as a euclidean space, which is 1,2,4 or 8, and S*”7' is the unit
(2n — 1)-sphere in the euclidean 2n-space K X K, then there is a natural
smooth great (n — 1)-sphere fibration of $?"~! such that any (u, w), (&', w") €
5271 belong to the same fibre iff either w = w’ = 0 or uw™' = u'w’~'. When
n > 1, this fibration, as well as isomorphic ones, is often referred as the Hopf
fibration. Related to this result, Adams’ theorem [1] says that a smooth
fibration of S2*~! by (n — 1)-spheres can occur only when n =1,2,4 or 8,
and a classical theorem of Hurwitz [4] says that any division algebra K, which
possesses a norm such that for any v, w E K, |ow|=|v||w|, must be the real,
complex, quaternionic or Cayley algebra. If n = 1 or 2, then any n-dimensional
division algebra is the real or complex algebra, and any fibration of S2"7! by
(n — 1)-spheres is unique up to an isomorphism. Hence in these cases, the
correspondence between n-dimensional division algebras and smooth great
(n — 1)-sphere fibrations of $>"~! is trivial.

In this paper, we show that for n = 4 or 8§, each n-dimensional division
algebra K determines a smooth great (n — 1)-sphere fibration of $2"7!, and
every smooth great (n — 1)-sphere fibration of $?”~!, up to an isomorphism, is
determined by an n-dimensional division algebra K. However, it is possible
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that two division algebras, not isomorphic to each other, may determine
isomorphic smooth great (n — 1)-sphere fibrations of $*"~!. Such an example
can be found using division algebras constructed in Bruck [3].

We also show that any division algebra of dimension > 1 contains the
complex algebra as a subalgebra. Results of a subsequent paper of the author’s
joint work with Herman Gluck and Frank Warner will be used to show that
any smooth great 3-sphere fibration of S” is isomorphic to the Hopf fibration,
and hence any Blaschke manifold which has the integral cohomology ring of
the quaternionic projective 2-space HP? is homeomorphic to HP?.

The author wishes to express his gratitude to many colleagues of his for
numerous dicussions, and especially to McKenzie Y. Wang for bringing
Bruck’s paper to his attention, and to Stephen S. Shatz for showing him an
algebraic proof of the result that any division algebra of dimension > 1
contains the complex algebra.

Throughout this paper, R denotes the real algebra, and C the complex
algebra. Let K be the euclidean n-space, n = 1, which is often regarded as a
vector space over R. By a regular multiplication on K, we mean a bilinear
function

mKXK->K
such that for any a, b € K with a # 0, each of
m(v,a) =b, m(a,w)=>b

has a unique solution in K. K together with a regular multiplication on K is
called a regular algebra which we also denote by K. If m is the only regular
multiplication on K under our consideration, we often write vw in place of
m(v, w). We note that a regular multiplication may not be associative, and a
regular algebra may have no identity, and that a regular algebra may not have
a norm such that the norm of a product is equal to the product of the norms.
On the other hand, it can be shown that any l-dimensional regular algebra
must be R, and that the dimension of any regular algebra is 1,2,4 or 8. A
division algebra is defined to be a regular algebra having an identity. Notice
that the real, complex, quaternionic and Cayley algebras are division algebras.

Let {e;,---,e,} be a basis of K as a vector space over R. Then for any
bilinear function m:K X K — K, there are n® real numbers g, ko b I k=
1,- - -,n, such that

n n n n
m( 2ve, X wkek) =2 ( 2 Uiaijkwk)ej-
i=1 k=1

J=1\ik=1

Hence regular multiplications are always smooth.
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Proposition 1.  Any 1-dimensional regular algebra is the real algebra.

Proof. Let K be a 1-dimensional regular algebra, and let a be an element of
K different from the zero of K. By definition, ae = a for some ¢ € K. e is
different from the zero of K; otherwise, a = ae = a(0e) = 0(ae) = Oe = ¢,
contradicting to our assumption.,

Leta=te, 1 € R. Thent # 0, and fe = (te)e = te? so that e®> = e. Hence e
is the identity of K, and K can be naturally identified with R by setting re = r
forallr € R.

Theorem 1. Any division algebra of dimension > 1 contains a subalgebra
isomorphic to the complex algebra.

Corollary 1.  Any 2-dimensional division algebra is the complex algebra.

Let K be a division algebra of dimension n > 1, and let $2"~! be the unit
(n — 1)-sphere in K. We may assume that the identity e of K is contained in
S™~1: otherwise all we have to do is to use a new norm on K which is equal to
| e|™ times the old one.

Lemma 1. The map f: S"7' - S"~ ! defined by f(x) = x?/| x?| is of degree
2,

Proof. Let

4): Sn-—l X Sn—l - Sn—l
be the map defined by
¢(x, y) =x/| | .
Notice that ¢ is well-defined and continuous, since xy € K — {0} for any
x,y € K— {0}
Let A be the diagonal set in S"7! X §"7!. Let §"! be oriented, and let

S"7!' X (e}, {e} X S"! and A be so oriented that the natural projection of
each of them onto S~ ! is orientation-preserving. Let

$ut H,—y(S"71 X S"71) - H, (($"7T)
be the induced homomorphism of integral homology groups by ¢. Then
8,[571 % ()] =[] = 9,[{e} x 5771,
[a] =[5 x{e}] +[{e) x 5771],
so that
¢, [A] = 2[s"7'].

Since ¢(x, x) = f(x) for any x € S"~!, our assertion follows.
Proof of Theorem 1. By Lemma 1, the map

g:K-K
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defined by g(x) = x* is onto. Therefore there is an element i of K — {0} such
that

i?=g(i) = —e.
The linear 2-subspace of K having {e, i} as a basis is clearly a subalgebra of K
isomorphic to C.

As mentioned earlier, Stephen S. Shatz has an algebraic proof of Lemma 1,
and hence Theorem 1 can be proved algebraically.

Theorem 2. Let K be a regular algebra of dimension n > 1, and let S*"! be
the unit 2n — 1)-sphere in the euclidean 2n-space K X K. Then K determines a
smooth great (n — 1)-sphere fibration of S**~" such that any (u, w), (v/,w") €
5271 belong to the same fibre iff eitherw = w’ = 0 or u = vw and u’ = vw’ for
some v € K. Moreover, the fibrations determined by two isomorphic regular
algebras are smoothly isomorphic.

Notice that if K is the complex, quaternionic or Cayley algebra, then the
fibration determined by K is the Hopf fibration.

Proof. Let 2" =K U {0} be the one-point compactification of K. Then
2" can be made a smooth manifold as follows. For any u € K — {0}, we let

A2 = {0} -K

be the homeomorphism such that A (00) = 0 and vA (v) = uforanyv € K —

{0} = 2" — {0,00}. Since A : K — {0} » K — {0} is a diffeomorphism, there

is a smooth structure on 3" such that the inclusion map of K into 3" is a

smooth imbedding, and A, is a diffeomorphism for some u € K — {0}. The

smooth structure on 2" is independent of the choice of u. In fact, for any

u, ' € K— {0}, u and " can be joined by a smooth path in K — {0}, and
hence A, A, K — {0} - K — {0} are isotopic.

Let

7: 82 5 30
be the map such that #(u,0) = co for any u € S"~!, and 7(u, w)w = u for any
(u,w) € S?""! with w # 0. Since the multiplication on K is bilinear, it follows
that 7 'v is a great (n — 1)-sphere in $2”~! for any v € =",

There is a smooth imbedding

g Kx 8§71 - §2n!

given by

go(v,w) = (vw/\/| ow[P+ 1, w/|ow] + 1),
and for any v € K, mgy({v} X S$”7!) = v. Also there is a smooth imbedding
£ 57X (37— (0)) = 57
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given by

2(1,0) = (w/ 1T+ ) F AT HIA(0)F),

and for any v € 3" — {0}, 7g,(S""' X {v}) = v. Hence
7: §271 5 31
is a smooth great (n — 1)-sphere fibration.
Let K, be a regular algebra isomorphic to K, and let
7 SPl > 2
be the smooth great (n — 1)-sphere fibration determined by K, where S?"~ ! is
the unit (2n — 1)-sphere in K, X K. Then ;: §2"~! —» 27 is smoothly isomor-
phic to 7: §2"~! > =", In fact, if f: K; —» K s an isomorphism, then
XK XK, -KXK
defined by ( f X f)(u;, w,) = (fuy, fw;) is a nonsingular linear map so that
h: S]Zn—l N S2n—l
defined by h(u,, w,) = (fu,, fw))/| (fu,, fw)| is a diffeomorphism. It is easy
to see that h maps fibres of 7: S{*~' - Z into fibres of m: $**~! > =",
Hence the proof is completed.
As a consequence of Theorem 2 and Adams’ theorem, we have
Corollary 2. The dimension of any regular algebra is 1,2,4 or 8.
Let GL(K) be the group of nonsingular linear maps of K into K. Two regular
multiplications m and m; on K are said to be equivalent if there exist
®, ¥, w € GL(K) such that m(» X w) = um, that means, the diagram

my
KxK—K

is commutative.

Proposition 2. Let m and m, be equivalent regular multiplications on the
euclidean n-space K. Then the smooth great (n — 1)-sphere fibrations of S*"~!
determined by the regular algebras (K, m) and (K, m,) are smoothly isomorphic.

Proof. Let

a: 82" S5 3 4y §2n—1 2

be the smooth great (n — 1)-sphere fibrations determined by (K, m) and
(K, m,). Since m and m, are equivalent, there are pu, », w € GL(K) such that
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my(r X @) = um. Then p X »: K X K - K X K is a nonsingular linear map so
that A: §2"~! > §2771 defined by h(u, w) = (pu, ww) /| (pu, ww) | is a diffeo-
morphism. It is easily seen that 4 maps fibers of #: $>*~! — 3" into fibres of
7 ST 3

Proposition 3. On the euclidean n-space K, any regular multiplication is
equivalent to one having an identity.

Proof. Let m be a regular multiplication on K, and let

®,¥v:K— {0} > GL(K)
be the smooth maps such that
O(v)w=m(v,w), ¥(w)v=m(v,w).
Lete € K — {0}, let
p,v,0: K=K
be the elements of GL(K) given by
w(u) =¥(e)'u, v(v)=v, w(w)=¥(e) ®(e)w,
and let m’ be the regular multiplication on K such that
m'(v X w) = um.
Then for any v’,w’ € K — {0},
¥(e) 2(0)®(e) ¥(e)w,

m'(v',w') = ¥(e) " m(v, ®(e) ¥(e)w) = {‘I'(e)_l‘l'(fI)(e)_l‘I'(e)w')v'.

Therefore
m'(e,w) = ¥(e) ' ®(e)®(e) ¥(e)w =w,
so that
e=m'(e,e) = \I'(e)_l‘I'('IJ(e)_l‘I'(e)e)e.
From the last equality, we infer that ®(e)™' ¥(e)e = e and hence
m'(v',e) = ¥(e) ¥(®(e) ' ¥(e)e)v = .

As a consequence of Propositions 2 and 3, we have

Corollary 3. Any smooth great (n — 1)-sphere fibration of S*"~" determined
by a regular algebra is smoothly isomorphic to one determined by a division
algebra.

Now we are in a position to construct, from a given smooth great (n — 1)-
sphere fibration of $2”~!, an n-dimensional division algebra K such that the
smooth great (#n — 1)-sphere fibration of S2"~! determined by K is smoothly
isomorphic to the given one. Since it is trivial for » = 1 or 2, in the following
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we assume that

n=4or8.

Let K be the euclidean n-space, and S"~! the unit (n — 1)-sphere in K. Let
GL(K) be the group of all nonsingular linear maps of K into K, and SL(K) the
subgroup of GL(K) consisting of all the g € GL(K) with det g = 1.

Let L, be a normed real vector n-space, and S~ the unit (n — 1)-sphere in
L,i=1,2. A diffeomorphism f: "' — S7~! is called a linear diffeomor-
phism if there is a nonsingular linear map g: L, — L, such that for any
x € 77 f(x) = 8(x)/| 8(x)] -

Lemma 2. Whenever g € GL(K), we have a linear diffeomorphism

gz Sn—l N Sn—l

defined by g(x) = g(x)/|g(x)|. Conversely, whenever f: S"~' - §"7! is a
linear diffeomorphism, there is a unique g € GL(R) such that § = f and det g =
=1, and g'g™" is in the center of GL(K) for any g’ € GL(K) with g’ = f. Hence

SL(K) = {g|g € SL(K)}

acts on 8"~ as a smooth transformation group.

For any map a: §"~! - SL(K), we have a map a: $"~! — SL(K) defined by
a(v) =a(v), called the associated map of a.

Lemma 3. Let S/~ be S"~! or a great (n — 1)-sphere in S*"7!, i=1,2.

Then any linear diffeomorphism f: S}~ — S}~ maps great circles into great

circles, and any map f: S'~' — S~ which maps great circles into great circles is
a linear diffeomorphism.

Lemma 2 is quite obvious and Lemma 3 is a consequence of the well-known
theorem in projective geometry that any map of a projective space of dimen-
sion > 1 into itself which maps projective lines into projective lines is a
projective transformation.

Let

7§25 3

be a given smooth great (n — 1)-sphere fibration of §27~!. We first observe
that 2" is homeomorphic to the n-sphere. In fact, if S” is a great n-sphere in
S$27~! containing a fibre F, then F is a great (n — 1)-sphere in S§”, and 2" is
obtained from a closed hemisphere in §” with boundary F by identifying F to
a single point.

Let F, and F, be two distinct fibres. Whenever x is a point of S*"~' — F, F,
and x determine a great n-sphere in $2"~!. The closed hemisphere in this great
n-sphere of boundary F; containing x will be denoted by F,x.
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Let
ho: SV — F, - Fy,h: S ' — F, > F,
be the smooth maps such that for any x € §?"~! — F,_,, h;(x) is the point of
intersection of F,_;x with F,,i = 0, 1. Let
xo = wky, )’cl =aF,.

Then
a X hO: S2n_1 —Fl —)(En - {Xl}) X Fb,

hy X@: 82" — Fy - F; X (2"~ {x,})

are diffeomorphisms, which are local trivializations of the fibration over
2" — {x,} and 2" — {x,} respectively.

Let S be the (n — 1)-sphere of unit tangent vectors of 2" at x, with respect
to any preassigned Riemannian metric on 2". Then for any (v,w) € S X F,,
there is a tangent vector (v, w) of Fjw at w such that

dn(7(0,w)) = v.
Now we define a smooth map
ESXFy=F

as follows. Let (v,w) € S X F,. Then there is a smooth map f:[0,1] » Fw
such that f(¢t) = w iff t =0, and f’(0) = 7(v, w). It is not hard to see that
lim,_, o F; f(¢) exists and is a closed hemisphere of boundary F, with 7(v, w) as
a tangent vector at w. £(v,w) is defined to be the point of intersection of
lim,_ ¢ F, f(t) with F).

The following lemma plays a key role in our paper.

Lemma 4. For any v € S, w - £(v, w) is a linear diffeomorphism of F, onto
F|, and for any w € F;, v - &(v, w) is a linear diffeomorphism of S onto F;.

Proof. Let v € S and let f:[0,1] -» 2" — {x,} be a smooth map such that
f(t) = x,iff t = 0, and f’(0) = v. Then for any w € F;, we have a smooth map
1,210, 1] » Fiw such that =f, = f. Clearly f,(¢) =w iff t=20, and f(0) =
7(v, w). Moreover,

&(v.w) = limh, £,(0).

Let C be a great circle in F,. Then for any ¢ € (0,1], C, = {f(t)|w € C} is
the intersection of #~!f(¢) with the great (n + 1)-sphere in S2"~! determined
by F, and C, so that it is a great circle in 7 ~'f(¢). Therefore #,(C,), which is the
intersection of F, with the great (n + 1)-sphere in $"~! determined by F, and
C,, is a great circle in F;. Hence (v, C) = lim,_ o #,(C,) is a great circle in F,.
From this result and Lemma 3 we conclude that w — £(v,w) is a linear
diffeomorphism of F, onto F;.
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Let w € F,. For any great circle C in S we have a great (n + 1)-sphere S$”*!
in §2"~! containing F, such that for any v € C, 7(v, w) is a tangent vector of
St 1 at w. It can be seen that £(C, w) is the intersection of F; and $"*! so that
it is a great circle in F|. Hence by Lemma 3, v — £(v, w) is a linear diffeomor-
phism of S onto F;.

Since =" is l-connected, we may assume that 7: $2"~! — 3" is oriented.
Then for any v € S, w - §(v, w) is an orientation-preserving linear diffeomor-
phism of F, onto F,. We let S be so oriented that for any w € F,, v — §{(v, w)
is also an orientation-preserving linear diffeomorphism of S onto F;.

Let $”~! be naturally oriented, and let us identify F,, F, and S with $"~! by
orientation-preserving linear diffeomorphisms. Then §: § X F, — F, becomes a
smooth map

¢ s g1, gn—1
such that for some smooth maps
$,9: 8771 — SL(K),
we have
£(o,w) = ¢(v)w =y (w)o,

where ¢, y: $"7! - S—L(K) are the associated maps of ¢ and .

The following result can be proved in the same way as Proposition 3.

LemmaS. Foranye € S" ', we let

pe=y(e)”, v, = identity, w,=y(e) (e),
let ’
e, Y S — SL(K)

be the smooth maps defined by

$(0) = (v 0w,

u(w) = p (e W)y,
and let

£, 81X §nl o gl

be the smooth map defined by
£(o,w) = L4750, &]'w).
Then
o(e) =y, (e) = identity,
£(v,w) = g(0)w = . (w)o,
where ¢,, ,: S"~' — SL(K) are the associated maps of ¢, and {,.
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Lemma 6. X can be made a division algebra with identity e such that for any
v,we S
(v, w)=ow/|ow|.
The following results are needed in the proof of Lemma 6.

Sublemma 1. Let U be a nonnull open subset of R, and let v, w: U —» R and
a: R — R be smooth maps such that

a(r) >0
for anyr € R, and
T+ (s)r
ofr) = 1+ w(s)r
foranyr € Rands € U, Then

Proof. By hypothesis,
a(r)(1 + w(s)r) =14+ »(s)r.
Partially differentiating the equality with respect to s, we obtain
a(r)w'(s)r =v'(s)r.
Therefore
a{r)w'(s) =7v'(s).
If w'(s) = 0, then a(r) = »'(s)/w'(s) which is independent of the choice of r.
Therefore a(r) = «(0) = 1 and hence
a=1,
If w'(s) = 0, then »'(s) = 0. Therefore there are v, w € R such that

14+ »r
ofr) = 1+ wr’

Since a(r) > 0 for all r € R, it follows that » = w. Hence a(r) = 1 for all
reRor

a=1.
Sublemma 2. Let Ay, A5, p, 5, a: R = R be smooth maps such that

a(r)>0
for any r € R, and
LA A ()r?
1+ py(s)r + po(s)r?

for any r, s € R. Then either A, A, p,, p, are constant maps or a = 1.

a(r)
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Proof. By hypothesis,

a(r)(1+ wy(s)r + pp(s)r?) = 14 A (s)r + A, (s)r2
Partially differentiating the equality with respect to s, we obtain

a(r)(pi(s)r + py(s)r?) = M(s)r + Ny(s)r?.
Therefore
a(r)(pi(s) + pi(s)r) = Ni(s) + Ny(s)r.
Assume first that pi(s) = 0. Then
Ai(s) = a(0)uy(s)0 =0,
so that
a(r)ps(s) = Ay(s).
If po(s) =0, then Ay(s)=0. Hence A, Ay, uy, b, are constant maps. If
p5(s) = 0, then there is a nonnull open subset U of R such that for any s € U,
p5(s) # 0. Therefore for any r ER and s € U, a(r) = Ny(s)/u5(s) which is
independent of the choice of 7. Hence a(7) = a(0) = 1 or a = 1.

Assume next that ui(s) Z 0. Then there is a nonnull open subset U of R
such that p/(s) = 0 and

Ai(s) = a(0)pi(s) = pi(s)
for any s € U. Therefore forany r € Rand s € U,
() = L)/ )r
1+ (po(s)/mi(s))r

Hence by Sublemma 1,
a=1.
Proof of Lemma 6. In this proof, we drop the subscript e from §,, ¢,, ¢, so
that £, ¢, ¢ are actually £,, ¢,, ¥, of Lemma 5.
Let

®,¥:K — {0} - GL(K)
be the maps such that for any v, w € K — {0},

= ,— v w
¥(0) = oo #(e/10], () =

Then for any v,w € K — {0},
P(v)e=v="P(e)v, ¥(w)e=w=0(e)w,
O(o)w/|@(v)w|= ¥(w)o/| ¥(w)o].

1v] \
0o T e /1
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If we are able to show that for any v,w € K — {0},
O(v)w=¥(w)o,
then K can be made a division algebra such that for any v,w € K — {0},
ow = ®(v)w = ¥(w)v so that for any v,w € S"~!, &(v, w) = vw/| ow| .
In the following, we let v and w be two fixed elements of K — {0}. If v = re
for some r € R, then

O(v)w =rd(e)w = r¥(w)e = ¥(w)o.

If w = re for some r € R, then ®(v)w = r®(v)e = r¥(e)v = ¥(w)v. Hence
we may assume that o, w & Re. Let y be the real number such that

®(v)w=y¥(w)o.
We claim thaty = 1.

Assume first that e, v,w are not linearly independent. Then for some

t,t’ ER,

w=te+tv,t' #0
Let {e,- - -,e,} be a basis of K such that

e,=e,e,=0,
and let y,,- - -, v, € R be such that
V(ey)ey =yie + - +y,6,.
Ify,=v=v%="-=v=0then
V(e,)(e, — v2¢1) = ¥ley)e, — v,¥(ey)e; = 126, — Y6, = 0,
which is impossible. Therefore y, # 0 for some k # 2. We may assume that
v, 0.

In fact, if v, =0, then y, 0 for some k£ > 2, so that by replacing e, by
e, + e, we obtain a new v, different from 0.
For any r, s € R, there are smooth real valued functions

a=a(r), B=p8(s)
such that
®(e, +rey)e, =a¥(e,)(e, +rey), ¥(e, + se,)e, = BP(e,)(e; + se,).

Clearly «(0) =1 and a(r) # 0 for all » € R. Hence a(r) >0 for all r € R.
Similarly 8(0) = 1 and B(s) > 0 for all s € R. Now

D(e, +re,)(e, + se,) = D(e, + re,)e; + sP(e, + re,)e,

=e, + re, + sa¥(e,)(e, + re,)

=e, + re, + sae, + rsa(ye, + - - +v,e,).
Y(e, +se,)(e, +re,) = e, + rBey + se, + rsBy(vie, + -+ - +v,e,).



FIBRATIONS OF SPHERES 589

Since the coefficients of e,---,e, in ®(e; + re,) e, + se,) and those in
Y(e, + se,)(e, + re,) are proportional, we infer that

1+ rsay,  r+sa+rsay, _ayy
LtrsByy,  B+s+rsByy,  Byv.’

k>2.

Therefore

L L ((B=D)/s+ Brr)r = (Brv)r?
L+ (v +sm = sByv)r — (Br)r®

By Sublemma 2, eithera = 1 or

((B=1)/s+ Byv,) = (Byv,)) = (vo + 57, — sByv,) = (By,) = 0.
In the first case,

(B=1)/s+ By, =n+sv —sByv, Byvi = B

Since By, # 0, it follows from the second equality that y = 1. Then the first
equality becomes

(B—1)(1/s+ v, +sv,) =0.

Therefore 8 — 1 =0 or 8 = 1. In the second case, 8’(s) = 0 so that B(s) =
B(0) = 1. Then

0=(v, +sm —sByy,) =n(l —v),
so that y = 1. Therefore & = 1. Hence we always have
a=1,8=1,vy=1
Since v = e, and w = te, + t'e,, it follows that when ¢t = 0,
O(v)w=1t'®(e,)e, = t'¥(e,)e, = ¥(w)v,
and when ¢ # 0,
O(v)w =1®(e;)(e, + (' /1)e,) = t¥(e, + (t'/1)ey)e, = ¥(w)o.
Assume now that e, v,w are linearly independent. Then there is a basis
{e,---,e,} of K such that
e, =e,e; =0,e, = W.
Let y;,- - -,v, € R be such that
V(ey)e, = vie, + - +v,e,.
Then
®(e, + rey)(e; + se;) = e, +re, + sae; + rsa(y,e; + -+ +v,e,),
Y(e, + se;)(e;, +re,) =e, + rBe, +se; + rsBy(vie, + -+ - +v,8,)-
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Therefore

1+ rsayy,  r+ray, _sa-trsay;  ay,
L+rsByvy mB+rsByy, s+rsByy Byv’

k> 3.

We may assume that one of v, ¥,, v; is not 0. In fact, if y, = v, =v; =0,
then for some & > 0, v, # 0. By replacing e, by e, + e, we obtain a new vy,
different from 0.

If either v, or v; is not 0, from

1+ rsay;, _ sa+ rsay,
1+rsByy, s+ rsByy,

we obtain that

_ 1+ (Byy;)r
o = .
1+ (y; + sByy, — sy)r
By Sublemma 1, & = 1, so that
Byys; =+ sByv, — sy,

or
(By — 1)(y; —s7) = 0.
Since either v, and v, is not 0, it follows that 8y — 1 = 0. Hence
y=1,8=lLa=1.

If v, is not 0, we have

— 1+ (ayy)s
p= 1+ (yy, +ray, —rym)s
Similarly,

y=lLa=1,8=1.
Since v = e, and w = e, it follows that
D(v)w = 0(e,)e; = ¥(e;)e, = ¥(w)o.

Hence the proof of Lemma 6 is completed.

Theorem 3. Let K be a division algebra of dimension n, n = 4 or 8, and let

7:§2 1> 3

be the smooth great (n — 1)-sphere fibration determined by XK as seen in Theorem

2. Then K can be recovered from the fibration by the construction given above.
Proof. Let

F,={0} x s, F,=8""1x{0},
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and let 2" be assigned a Riemannian metric such that the smooth imbedding p
of D" = {x € K||x|=< 1} into =" given by

p(v) = w(vw/\/| owl2+ 1, w/y|ow]P + 1 )

is isometric. Then we have natural linear diffeomorphisms of F;, F; and S onto
S™~ 1 of which the first two are projections and the last is (dp)~".

Let us use these diffeomorphisms to identify F,, F, and S with $"~!. Then
£ S X Fy - F, becomes

gz Sn—l X Sn—l N Sn—l
defined by
o,w)=ow/|ow|.
Hence the regular multiplication constructed in Lemma 6 is the same as that in

K.

Theorem 4. Let

V 7§ 3

be a given smooth great (n — 1)-sphere fibration, n = 4 or 8, and let K be the
n-dimensional division algebra constructed from the fibration as seen earlier. Then
the fibration is smoothly isomorphic to that determined by K.

Proof. With respect to a preassigned Riemannian metric on 2*, there is a
8 > 0 such that if D; is the closed n-disk in the tangent space of 2" at x,, of
center 0 and radius §, then the exponential map exp imbeds D; smoothly into
2" — {x;}. Let D be the compact smooth n-manifold obtained from the
disjoint union of 2" — {x,} and S X [0, §) by identifying every (v, ) € § X
(0, &) with exp rv € =" X {x,}. It is clear that D is a smooth closed n-disk, and
its boundary is § X {0} = S.

Let

A: Dy X Fy—> 8§27}
be the smooth imbedding such that A(v, w) € Fyw and #A(v, w) = exp v for
any (v, w) € Dy X F,. Then we have a compact smooth (2n — 1)-manifold W
obtained from the disjoint union of $?"~'—F, and S X [0,8) X F, by
identifying every (v, t, w) € S X (0, 8) X F, with Ad(ro,w) € §"7! — F,. Itis
clear that the boundary of Wis S X {0} X F, = § X F,, and that 7: $?"~! —
F, » 2" — {x,} can be naturally extended to a smooth fibration
7. W - D.
From the construction of & S X F, » F,, it can be shown that £ can be
naturally extended to a smooth fibration
&EW - F
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such that for any x € W — (S X F,), §(x) is the point of intersection of Fyx
with F,. Hence
hy=(£Xm) :FFXD>W

is a diffeomorphism.

The inclusion map of $2"~! — F, into §?"! can be extended to a smooth
map

hy: W 827!
such that 4,(v,w) = w for any (v, w) € § X Fy = 3W. Therefore we have a
smooth map
h=hyh,: F, XD - §*!

such that the fibration 7: §2*~! - =" is induced by the projection fibration
F, X D - D. Moreover, whenever (4, v), (&, v) € F; X D, h(u, v) = h(u’, v’)
iff either (u, v) = («#/,v) or u = u/, v, v’ € § = 3D and for some w,w’ € F,.
u=§&wv,w)y=§0',w)=u'..

In the construction of the division algebra K, we identify F,, F| and S with
§7~! C K. Then we have a smooth map

h':F X D- 8§71

given as follows. Let us regard D — {x,} as {v € K|0 <|v|< 1}. Then for
any (u, v) € F; X (D — {x,}) thereis a unique w(u, v) € Kwith ow(u, v) = u.
The map 4’ is given by

(#,0) ifv=x,

B(u,v) = U w(u, v)

, otherwise.
Y1+ w(u, o) P 1+ [w(u, o)

Now it is not hard to see that the identity map of F; X D induces a smooth
isomorphism between the fibration #: S>*~! > =" and that determined by the
division algebra K.

Corollary 4. Up to a smooth isomorphism, every smooth great (n — 1)-sphere
fibration of S*"~ ! is determined by an n-dimensional division algebra.

Remark. It is possible to have many n-dimensional division algebras, not
isomorphic to one another but determining isomorphic smooth great (n — 1)-
sphere fibrations of S2"~ . In fact, whenever a, 8, v, o, 8/, ¥’ are positive real
numbers satisfying

atBty—afy=o+ B +y —oBY,
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there is a 4-dimensional division algebra which, as the quaternionic algebra,
has {e, i, j, k} as a basis, but in which the multiplication is given by:

e i J k
e e i J k
i i —e vk -B'k
J J 'k ~e ai
k k BJj —a'i —e

Also for any 6 € [0, 7 /2], there is a 4-dimensional division algebra which has
{e, i, j, k} as a basis and in which the multiplication is given by:

e i j k
e e i J k
i i —e k -
J J -k —ecosf + isind icosf + esinf
k k J —icos@ —esind —ecos@ + isinf

For details, see Bruck [4]. Since all these division algebras are homotopic to the
quaternionic algebra, the smooth great 3-sphere fibrations of §7 determined by
them are smoothly isomorphic to the Hopf fibration.
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